Tutorial on Neural Systems Modeling

نویسنده

  • Shelby Montague
چکیده

cleic acids or rusty on their molecular biology to catch up quickly. While each chapter functions well on its own, the book as a whole could have been better organized. As written, it comes off as a series of vignettes on molecular biology rather than a cohesive examination of the RNA world hypothesis. Additionally, while the conversational, humorous, and at times philosophical style of writing is generally engaging, Yarus does overdo it from time to time. The opening quotes for each chapter seem like a forced effort to engage non-scientists and are generally difficult to link with the topic of the chapter. Some chapters seem redundant. Overall, however, Yarus has made a good effort to educate readers on an important but frequently overlooked aspect of genetics and evolutionary biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tutorial on Quasi-experimental designs

A main step in answering a scientific hypothesis in an epidemiological study is deciding which type of study is suitable to be undertaken, considering methodology, practical considerations and budget and time limitations

متن کامل

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Deep Learning for the Web

Deep learning is a machine learning technology that automatically extracts higher-level representations from raw data by stacking multiple layers of neuron-like units. The stacking allows for extracting representations of increasingly-complex features without time-consuming, offline feature engineering. Recent success of deep learning has shown that it outperforms state-of-the-art systems in im...

متن کامل

Deep Learning for Dialogue Systems

In the past decade, goal-oriented spoken dialogue systems have been the most prominent component in today’s virtual personal assistants. The classic dialogue systems have rather complex and/or modular pipelines. The advance of deep learning technologies has recently risen the applications of neural models to dialogue modeling. However, how to successfully apply deep learning based approaches to...

متن کامل

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2011